Denominator identities for the periplectic Lie superalgebra
نویسندگان
چکیده
We prove denominator identities for the periplectic Lie superalgebra p ( n ) , thereby completing problem of finding all simple classical finite-dimensional superalgebras.
منابع مشابه
Denominator formulas for Lie superalgebras ( extended abstract )
We provide formulas for the Weyl-Kac denominator and superdenominator of a basic classical Lie superalgebra for a distinguished set of positive roots. Résumé. Nous donnons les formules pour les dénominateurs et super-dénominateurs de Weyl-Kac d’une superalgèbre de Lie basique classique pour un ensemble distingué de racines positives.
متن کاملYangian of the Queer Lie Superalgebra
Consider the complex matrix Lie superalgebra glN|N with the standard generators Eij where i, j = ±1 , . . . ,±N . Define an involutory automorphism η of glN|N by η (Eij) = E−i,−j . The twisted polynomial current Lie superalgebra g = {X(u) ∈ glN|N [u] : η (X(u)) = X(−u) } has a natural Lie co-superalgebra structure. We quantise the universal enveloping algebra U(g) as a co-Poisson Hopf superalge...
متن کاملEquivalence of Blocks for the General Linear Lie Superalgebra
We develop a reduction procedure which provides an equivalence (as highest weight categories) from an arbitrary block (defined in terms of the central character and the integral Weyl group) of the BGG category O for a general linear Lie superalgebra to an integral block of O for (possibly a direct sum of) general linear Lie superalgebras. We also establish indecomposability of blocks of O.
متن کاملCapelli Identities for Lie Superalgebras
The Capelli identity [1] is one of the best exploited results of the classical invariant theory. It provides a set of distinguished generators C1, . . . ,CN for the centre of the enveloping algebra U(glN ) of the general linear Lie algebra. For any non-negative integer M consider the natural action of the Lie algebra glN in the vector space CN⊗CM . Extend it to the action of the algebra U(glN )...
متن کاملSome Remarks on the Characters of the General Lie Superalgebra
Berele and Regev [1] defined the ring of hook Schur functions and showed that these functions are the characters of the general Lie superalgebra. Since the introduction of the hook Schur functions they have been extensively studied with respect to their combinatorial properties [2], [3], [4]. We compute the Hilbert series of this ring by giving a generating function for the partitions which fit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2020.09.030